
Unclassified
SWCURITY CLASSFIC(AtON OF THIS PAGE

REPORT DOCUMENTATION PAGE
lb RESTRICTIVE MARKINGS

3 . DISTRIBUTION/ AVAILABILITY OF REPORT
,A20 2 Approved for public release;

E I distribution unlimited.

4- PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

P248-FR .,oO-P? - " 0 27,2
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Atmospheric and Environmental (If applicable) Air Force Office of Scientific Research
Research, Inc.

6c_ ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
840 Memorial Drive Directorate of Chemical and Atmospheric

Sciences

Cambridge, MA 02139 Bolling AFB, DC 20332-6448

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
AFOSR NC F49620-88-C-0105

8c ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
i- PROGRAM PROJECT TASK WORK UNIT

Bolling AFB, DC 20332-6448 ELEMENT NO. NO. jNO. ACCESSION NO.

11. TITLE (Include Security Classification)

On the use of multiprocessing computers for global numerical weather prediction

12. PERSONAL AUTHOR(S) Ross N. Hoffman and T. Nehrkorn

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 1. PAGE COUNT
Final Report FROM 88 Aug. TO 89 Jan. 1989 February 15 41

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Numerical weather prediction; global spectral model

multiprocessor

19. ABSTRACT (Continue-on-reverse if necessary and identify by block number)

A preliminary exploration is made of the uses of multiprocessing computers for large
scale NWP using spectral models. In general if global communication between processors is
relatively fast and easy, then implementing spectral models is feasible.

The global spectral model is recast in terms of latitude and wavenumber tasks. This
approach has a number of advantages: The entire algorithm is macrotasked. Only a handful
of crucial pointers need to be locked. The spectral transform calculations are localized
so that arithmetic always follows the same ordering and all results are exactly
reproducible.

The latitude wavenumber tasking scheme is implemented and tested on the Sequent
Balance, a shared memory multiple instruction multiple data device. It is argued that
this scheme could be easily extended and applied to larger machines of this class and
provide a good starting point for distributed memory machines.

The potential of single instruction multiple data machines is huge. A proposed algo-
rithm for this class of machine uses a processor for each horizontal grid point.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
EJUNCLASSIiiED/ UNLIMITED M] SAME AS RPT El oTIC ."r' Unclassified

22a NAME OF "ESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFHCE SYMBOL
J. Stobie 21;2 767 49(3 AFOSR/NC

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF HIS PAGE
All other editions are obsolete

Unclassified

1. Introduction

Historically, progress in numerical weather prediction (NWP) has paral-

leled progress in computing capabilities, with each discipline often

spurring advances in the other (Schuman, 1982). (A list of all acronyms

used here appears in the Appendix.) Advances in computing have also per-

mitted the development of detailed general circulation models (GCMs) for

climate studies. Operational NWP is particularly sensitive to computing

advances because real ti-p wpather forecasting imposes efficiency con-

straints that limit the degree of sophistication of the models used and

hence the accuracy attained by NWP when even the most powerful computers are

used; improvements in computation speed often herald improvements in fore-

casting ability. This is demonstrated in Fig. 1.

SKILL PERCENT

100 -

ERROR

80 IBM360/195 0.2. C/'DC 6600

40 0.6
Subjective

20 0 0.80) 0) 0 0

0, If I, I I I I I 1 11 1 J I I I I I ,I ,, 1, ,A I I , I 1 ,

1950 1960 1970 1980

Fig. 1. Increase of NMC prediction skill. Record of skill, averaged an-
nually, of predictions of atmospheric circulation made by the National
Meteorological Center. Specifically, the predictions are for 36 hours at 50
kPa (approximately 5.6 km high) over North America. The horizontal bars

show averages for the years during which no major changes in models oc-
curred. The tic marks at the bottom show the time of acquisition of each

machine. The measure of skill is derived from the so-called S1 score, which

is a measure of normalized error in pressure gradients. A chart with an S1

score of 20 is perfect for all practical purposes, and one with 70 is
worthless. Skill (percent) is 2 x (70 - SI), which yields 0 for a worthless

chart, and 100 for a practically perfect one. Error = I (skill/100) is

shown on the right (from ShL'--, 1292)

d i:,.

4

A recent trend in computer technology is the construction of machines

composed of a number of processors linked together, allowing multiple

simultaneous computations. Such multiprocessing computers contain two or

more, in some cases tens of thousands, of individual processing units.

These processors may operate in lock step or they may be nearly autono-

mous. The former case, single instruction multiple data (SIMD), is partic-

ularly relevant for image processing applications, while the latter case,

multiple instruction multiple data (MIMD), is of more general interevt.

Multiprocessor computers give a substantial increase in computing speed for

large complex numerical problems. Thus, they provide an opportunity to re-

duce significantly the computing time for GCM studies and NWP. However, a

special effort is required to exploit this opportunity. According to the

recommendations of GARP Special Report No. 43 (WMO, 1985), "[I]ncreasing

computer po.Jer and changes in computer architecture... [have] always played

a major part in determining integration techniques and will continue to do

so if advances in computer technology are to be fully exploited. There-

fore, study to determine the most efficient or appropriate algorithms will

continue to be necessary, taking into account, for example, the future use

of multiprocessors with a very large storage. Development costs of such

optimized computer codes will be high, and they should be designed from the

outset to be widely usable..."

The design of a computer model intended for a multiprocessor must sat-

isfy a number of special concerns which are not encountered when using a

conventional machine. Kung (1980), Fox and Otto (1984), Kuck et al.

(1986), Ranka et al. (1988), White and Wiley (1988), Snelling (1988) and

Hoffmann and Snelling (1988) describe some of them. An efficient model de-

sign minimizes the amount of processor idle time. This is accomplished in

part by ensuring that each processor performs roughly the same amount of

work (by ensuring load balance). Adaptive algorithms such as the one de-

scribed in Section 5.1 dynamically balance the load during processing. To

accomplish this, a special monitor data structure which may be accessed by

only a single process at a time maintains a list of tasks to be perform-

ed. Processor idle time may also be minimized by synchronizing communica-

tion among processor- so that all communicate simultaneously whenever com-

-2

- 2 - "\1

munication occurs (communication balance). In addition, communica:ion must

be organized to preserve the integrity of the data. Strict maintenance of

separate load and communication balance is not necessary, of course, since

it may be desirable to have some processors communicate while others com-

pute; the two balances are, however, useful 6uides. In addition, cost

tradeoffs between communication and processing must be considered.

Tlt best way to handle these concerns depends partly on hardware fea-

tures of the machine used, such as the number of processors, the cost of

communication, and whether or not there is shared memory among these pro-

cessors. The manner in which these concerns are satisfied will also depend

on how much programming flexibility is allowed by the computer's operating

system. System services and the amount of effort to develop and debug

parallel applications varies widely (Karp and Babb, 1988). Gustafson et al.

(1988) discuss different ways of measuring efficiency. They point out, that

for most scientific problems, the most reasonable method of benchmarking

scales the problem up as the number of processors increase.

Separate but concurrent with the development of multiprocessor ma-

chines has been the development of efficient methods for spectral modeling

of the atmosphere. Global spectral models (GSMs) are now widely used for

both operational NWP (e.g., at AFGWC, NMC and ECMWF) and GCM climate re-

search (e.g., at NCAR and GFDL). Although most major forecasting and

modeling centers currently use spectral models, gridpoint models can also

be used, and this approach is favored by some (NEPRF, GLA, UCLA). Before

the discovery of the fast fourier transform (FFT), gridpoint models had the

advantage of speed over spectral models. With the FFT, spectral models are

faster than gridpoint models of comparable resolution and have several

other advantages, chiefly: (1) accurate horizontal differentiation, (2) no

aliasing, (3) no polar singularities and (4) easy implementation of the

semi-implicit time scheme (Bourke et al., 1977). Spectral models are,

therefore, the preferred choice, and we expect that they will remain so for

the immediate future, especially for operational large-scale forecasting

models.

A multiprocessing GSM model is therefore a partic-,!qrlv r~lev'ar. and

important application of multiprocessing computers since NWP is :,me con-

-3-

strained and limited by available computer power. A multiprocessing spect-

ral model is also relevant to climate research (e.g. what is the effect of

doubling and quadrupling CO 2). For very large models, memory becomes an

important concern. As resolution increases to take advantage of cpu speed,

memory becomes the most critical resource. In this case there is a tradeoff

between efficient usage of the processors and the memory. To conserve the

amount of memory required it may be preferable to make model runs in se-

quence using a multitasking model. Even if full speedup is not achieved

this may be more efficient than running copies of the model in parallel, if

these can nct all be conLained in fast memory.

Most hydrodynamical applications of multiprocessors have dealt with

grid point models. In contrast to grid point models, interactions in a

spectral model are global, that is they involve all modes. Furthermore

spectral models are usually implemented with a transform technique in which

both a spectral and a grid point representation are used. To date, multi-

processing GSMs have been quite successful but rather specialized and

limited in usefulness to a handful of processors and a specific machine.

At NCAR, R. Chervin has developed a multitasking version of the earliest

Community Climate Model (CCM) for the X-MP. In Chervin's version multiple

latitudes and multiple wavenumbers are processed simultaneously but other-

wise the original program structure is retained. A completely new multi-

tasking version of the CCM is under study (B. Boville, pers. comm.). At

ECMWF, investigators have adapted their global forecast model to run using

multiple processors of their CRAY X-MP computers (Gibson, 1985; Dent,

1988). Satisfactory speedups for up to four processors were achieved. The

ECMWF design is, however, highly constrained by memory considerations. As

a result, the ECMWF GSM is rather complicated and somewhat machine

specific.

The ultimate objective of our research is to obtain improved predict-

ive capability of an extremely complex system, the global atmosphere, by

improving existing or devising new mathematical models and algorithms for

use in multitasking global spectral NWP models. We expect that our effort

will produce a multiprocessor GSM that will be a useful and efficient tool

for operational and research purposes. The algorithms will be well-

4

4i

documented and should be easily portable, enabling modelers elsewhere to

use them to advantage. Since operational NWP is usually limited in part by

existing computer technology, our work should facilitate the transfer of

currently developing technology to operational use in an area that has

strong economic and societal impact. Also, the more efficient tool made

available by our research should permit more detailed simulation studies

with GCMs of important climate change problems such as nuclear winter and

the effects of changing CO2 concentration.

The current study demonstrates that spectral models may be adapted to

a variety of multiprocessing environment. Our objectives in Phase I were

to determine the requirements of an efficient GSM running on a multipro-

cessor computer aid to design algorithms that satisfy these requirements.

There are three classes of machine architectures we consider:

1) Shared memory multiple instruction multiple data (sMIMD);

2) Distributed memory multiple instruction multiple data (dMIMD); and

3) Single instruction multiple data (SIMD).

Examples of sMIMD machines are those of Sequent, Alliant, Cray and ETA. In

these machines, shared memory may be closely coupled (e.g. Alliant) or

loosely coupled (e.g. ETA) to the processors. Examples of dMIMD machines

are the Intel and Ncube hypercube machines and examples of sMIMD machines

are the Goodyear MPP and Thinking Machines Connection Machine. These

classes of machines are further discussed and contrasted with reference to

NWP in Section 6. We note that as we progress through this list, the level

of risk, level of effort and development time are expected to increase.

Because of the limited resources available to Phase I, we have concentrated

so far on sMIMD algorithms.

In addition we coded and tested two algorithms on the AFWL/SCP Sequent

Balance computer, a sMIMD machine, thereby demonstrating the feasibility of

these designs. These experiments have also helped to delineate sources of

inefficiency and cor esponding i.. ements. For the most part our Phase I

algorithms are independent of specifics of the Sequent system and would be

relatively easy to transport to other sMIMD machines such as the Alliant,

CRAY 2, ETA 10, etc. Our codes are in fact 99% standard fortran (ANSI

X3.9-1978).

-5

Our first sMIMD algorithm, denoted latitude tasking, is the simplest,

most straightforward application of multitasking to the existing GSM. Our

second sMIMD algorithm, denoted latitude wavenumber taqking, highlights the

fact that spectral as well as grid point models have a natural decomposi-

tion into tasks. In grid models of course one can map a physical domain

onto the computational domain, thereby dividing the problem into tasks. As

a result communication between tasks is required at the subdomain bound-

aries. In spectral models there is also a mapping of physical and spectral

domains onto the computational domain. Now communication is required not

at boundaries but at transforms between representations.

Access to the Sequent computer was provided to our project free of

charge. Without this access and support from AFWL personnel, we would not

have made as much progress during Phase I as we did. We take this oppor-

tunity to thank AFWL/SC.

The plan of this report is the following: Section 2 describes our

contract reporting requirements and fulfills most of the same. Section 3

then schematically describes the functions of a general GSM. This descrip-

tion is greatly simplified, but contains all the essentials. Then Sections

4 and 5 describe our sMIMD algorithms and results for latitude tasking and

latitude wavenumber tasking approaches respectively. Section 6 discusses

the extension of our work to dMIMD and SIMD architectures, which we antici-

pate will be the focus of our Phase II work. Section 7 contains a summary

and our concluding remarks.

2. Contract reporting requirements

This report provides a comprehensive, cumulative and substantive sum-

mary of the progress and significant accomplishments achieved during the

total period of the research effort. Since the results of the research ef-

fort have not previously been reported in scientific or technical publica-

tions, this report provides sufficient substantive detailed discussions of

the findings and accomplishments obtained in the pursuit of the planned re-

search objectives in Sections 4, 5 and 6.

-6

Further, in fulfillment of our reporting requirements we include in

t..e body of this report in the following paragraphs a summary overview of

the entire contract effort. This overview follows the instructions of

paragraph 3.b.(2) of Exhibit A, Reporting Requirements Under Contracts

Issued by AFOSR, of the subject contract.

a) Statement of work. The contract, Part 1, Section B, Item OOOAA,

states that research will:

1. Recast global spectral Numerical Weather Prediction (NWP) models

in terms of tasks and subtasks most advantageous to a multi-

processing computer environment.

2. Design and analyze multitasking implementations of such models.

3. Develop and test a simplified baseline, hemispheric spectral model

fcr simulation testing, based on best design concepts.

4. Code as much of the model above as possible in FORTRAN 77.

5. Test the code on a simulated or real multiprocessor as time and

resources permit.

b) Status. We have attained all our Phase I research goals and made sig-

nificant progress towards achieving our overall research objectives.

Specific accomplishments include the development and testing on the 16

processor Sequent computer at AFWL/SCP of two distinct algorithms for

numerical weather prediction. These algorithms, as well as the re-

sults of our tests are reported in Sections 4 and 5.

c) Journal publications. None have been prepared. We plan to submit a

paper based on the findings reported here to the SIAM J. Sci. Stat.

Comput. , entitled "Algorithms for multiprocessing spectral numerical

, atii~r prediction moueib" by k. N. Hoffman and T. Nehrkorn.

- 7 -

d) Personnel involved in the contract effort were R. N. Hoffman.

T. Nehrkorn, M. Mickelson and J.-F. Louis. No degrees were awarded to

these persons during the contract period.

e) i) Papers presented. None.

ii) Consultative and advisory functions to other laboratories and

agencies. None.

f) New discoveries, inventions, patents or specific applications stemming

from the research effort. None.

g) Other statements which can provide additional insight and information

for assessing and evaluating the progress and accomplishments achieved

in the research effort. See Section 7, the conclusions and summary

section.

3. Schematic GSM algorithm

The GSM actually does most calculations in gridpoint space. Only

linear terms are calculated in spectral space. Other terms, such as advec-

tion, diabatic physical processes such as moist convection, etc. are

localized in grid point space and much easiec Lu caicuidLe there. If we

consider, for the sake of explanation, an adiabatic spectral model, then a

simple graphical description of the functioning of the model is given ir.

Fig. 2. Beginning with spectral values of the variables (upper left

corner), the model transforms these to values of the grid point variables

and their spatial derivatives. These are used to calculate the (nonlinear

part of the) tendencies which are then transformed back to spectral

space. (Some linear terms are added to the tendencies in spectral space.

including higher order horizontal diffusion.) The tendencies in spectral

space and variables at previous time levels in :;pectral space are then used

by the time stepping procedure to obtain spectral values at the new time.

The cycle is continued until the desired forecast lengLa '-a chicved.

Gridpoint VL~ausSynthesisVa ues

Time Step Tendency
Calculation Calculation

Spectral Gridpoint Gridpointto Spectral TendenciesAnalysis

Fig. 2. Functional overview of GSM algorithm

As the basis for describing our multiprocessing algorithms, we first

consider a representative but schematic GSM algorithm. Let X(X, p) be all

gridpoint variables in all layers at longitude A and sine of latitude p.

The fourier transform of X is X and the Legendre transform of X is X n .
- -ml -m -m

where m i- the longitudinal wavenumber and n is the meridional mode

number. For clarity of notation, p, A and normalization factors will be

omitted in most of the equations that follow.

-9-

A representative time step is composed of the following steps:

(1) Legendre synthesis at each p for each m:

nn
= m m m'

n

where Pfn are the associated Legendre polynomials. Meridional derivativesm
of the fields are also calculated at this time by replacing Pm by its

derivative in the above expression.

(2) Fourier synthesis at each p for each A:

im),

X X Xe

m

Longitudinal derivatives are also calculated at this time by replacing eimA

by imeimA in the above expression.

(3) Gridpoint operations at each (A, a) coordinate:

f -F(X),

where f(A, p) is a vector of gridpoint tendency and flux terms in all

layers, and where F is a nonlinear function of X and its derivatives at a

single latitude-longitude point. This step involves vertical coupling.

(4) Fourier analysis at each M for each m:

f = f(A) eimA

A

(5) Gauss-Legendre integration for each m and n:

10

n
f w(ip) Pn(p) f (P)

-m £ -M

where w(p) are the Gauss-Legendre weights. Flux divergence terms are in-

tegrated by parts. A more complicated, but for present purposes equival-

ent, expression is used for these terms.

(6) Time integration for each m and n. Once the time tendencies are

assembled, the model state i., advanced in time by solving the semi-implicit

equation, which is schematically given by

[Xn X n =tAj(2t [fn -L X n L [X n + xn[.t/2

tt+At -mtAt]/(2at) -- n]t + n t+At -m tA

here Ln is the linear operator governing gravity wave evolution and all

quantities are evaluated at the time levels indicated. The operator Ln

couples vertical layers. At the completion of step (6), we are ready to

begin step (1) again.

The conventional implementation of this algorithm is to initialize the

spectral tendencies ffn to zero or to their linear components and then
-m

perform steps (1) through (5) with a loop on latitude, accumulating the

tendencies in fn. Except for the accumulation in step (5), the computation-m

for each latitude is independent. This implementation makes efficient use

of storage, since only the gridpoint variables for a single latitude are

needed at any one time. (Actually, two latitudes at a time are usually

processed, one in each hemisphere; this allows further efficiencies by

making use of symmetry properties.) In the next two sections, we present

results using this basic algorithm, macrotasking different subsets of steps

(1) through (6)

The following comments are relevant.

1. The tendency calculatioui need not include linear terms. These might

be handled more eff-ientL1v in spectral space during the time ste7

- 11 -

process. In particular the term involving thn lapacian of geopoten-

tial in the time tendency calculation is best calculated in spectral

space. This term requires knowledge of surface elevation in spectral

space. The time step process also includes two (linear) computational

devices: horizontal (del-fourth) diffusion to limit the build up of

small scale energy and the Robert time filter to prevent time

splitting of the solution due to the leap frog nature of the time

scheme.

2. Gridpoint values needed for tendency calculation for boundary layer

flux calculations include surface characteristics such as SST and drag

coefficient. In many cases the surface characteristics will be fixed,

but some may vary, such as soil moisture. In addition some time

lagged values are used to insure numerical stability of certain dif-

fusive processes in the boundary layer model.

3. All physical processes might be included in the tendency calcula-

tion. However, and this has generally been the case, if some are ad-

justment processes, such as a dry adiabatic adjustment or a moist con-

vective adjustment, then a second set of transforms is required. This

second loop is like the first (see Fig. 2) except instead of cal-

culating tendencies we calculate adjusted values and ir.'7tead of time

stepping we replace values. The Robert time filter should be per-

formed after (or in conjunction with) this replacement process. In

this diabatic model the two loops alternate.

4. To accommodate the Robert time filter we must time march one step be-

yond the actual final time.

5. The semi-implicit time scheme uses constant matrices which depend on

wave number n, the time increment A and a parameter a describing the

time averaging operator. These matrices should be precalculated

during initialization. Since these matrires depend only on the

combination of nt a A, where nt is one for the first time step and two

thereafter, they might have to be recal,,lated after the first time

12

step. However, if a = 1 for first step (backwards implicit) and

a = 1/2 otherwise (semi-implicit), then n t a A = A always and the

matrices in question are in fact constant.

6. There are two favored truncations in spectral space, rhomboidal and

triangular. The names rhomboidal and triangular describe the shape of

the region in the m,n plane retained in the truncation. Since the

meteorological fields are real valued only non negative values of m

are retained. For both truncations m varies from 0 to Nm . For rhom-

boidal truncation n varies from m to m + Nn, while for triangular

truncation n varies from m to Nn* In our Phase I tests we have used

rhomboidal truncation exclusively.

4. Latitude macrotasking scheme

Our first approach, denoted latitude macrotasking, is the most

straightforward adaptation of the GSM to a multiprocessing environment. In

the latitude macrotasking scheme, the computations of step (1) through (5)

of Section 3 are considered one task, which is handled by different pro-

cessors for different latitudes. The time integration, step (6), is con-

sidered a task to be handled by different processors for different spheric-

al harmonics or modes. We began with our portable, configurable version of

the GSM which is similar to the NMC and AFGL GSMs (Sela, 1980; Brenner et

al., 1982). This code is entirely written in standard Fortran and permits

easy changes in resolution, truncation, domain and included physics. In

the present work we used 9 layers, a rhomboidal 15 truncation and no di-

abatic physical processes, i.e. no radiation, precipitation, etc. In addi-

tion we decoupled the humidity variable so that it is simply a tracer used

for diagnostic purposes.

The transform grid had 20 latitudes (per hemisphere) and 48 longi-

tudes. A time step of 1 hour was used. To test the proper implementation

of this code on the Sequent, a 12-hour forecast on the Sequent with only

boundary layer physics was compared with the results of a 12-hour forecast

previously performed on the AER Harris H800 computer. The forecast on the

- 13 -

Harris used the full model physics (i.e. including dry and moist convec-

tion, and large scale precipitation). Global root mean square (rms) dif-

ferences between the two forecasts were consistent with the different model

physics: 5-10% (25%) of the forecast increment, i.e. the forecast minus the

initial conditions, for the horizontal wind (temperature).

Modifications to the code to enable multiprocessing involved some re-

arrangement of storage, so that variables shared between the processors

were stored separately from those that are local to each processor. In the

latitude macrotasking scheme, all variables are shared among the processors

except for those that are defined at a single latitude. Thus only the

values of the Legendre polynomials, the Fourier coefficients and gridpoint

values of the variables, and the gridpoint values of the nonlinear terms

are local to the processors. The Fourier coefficients and the grid point

values of the variables use the same storage space.

We implemented the latitude loop with macrotasking, i.e. tasks were

assigned to the processors at the subroutine level. For the simple version

of the GSM used in these tests, we used static task allocation, i.e. each

processor was assigned a predetermined number of latitudes, since the com-

putational load is well balanced between latitudes. In models with compli-

cated physics, there may be large enough differences in the computational

load between latitudes to warrant dynamic task allocation.

Within the loop over latitude, all the shared variables are read-only,

with the exception of the spectral coefficients of the tendencies. Thus,

the integrity of the data is readily preserved within the latitude loop, as

long as the updating of the tendencies in step (5) is safeguarded. We im-

plemented step (5) by first computing the partial sums for each latitude,

for all the variables in one vertical layer, in local work arrays in each

processor; the shared data region holding the tendencies for the particular

layer was then locked, the local sums added to the global values, and the

lock was released. To minimize contention for the locked data, each pro-

cessor started the computations at a different layer.

The time-stepping was implemented with microtasking, i.e. tasks were

assigned to the processors at the DO-LOOP level. We note that the computa-

- 14 -

tions in step (6) for one mode do not affect those of any other wavenumber,

thus eliminating any need for safeguarding shared data before it is up-

dated. The microtasking was implemented with compiler directives which

were expanded into parallel code by a preprocessor provided as part of the

Sequent FORTRAN compiler. The parallel code thus produced uses static

scheduling, which is appropriate for this application since the computa-

tional load is well balanced among the different modes.

There are several possible sources of inefficiency inherent in the de-

sign and implementation of this multiprocessing scheme. The most important

of these is a mismatch of the number of processors and the number of lati-

tudes: if the number of latitudes is not a multiple of the number of pro-

cessors, different processors will be assigned different numbers of lati-

tudes, resulting in load imbalance in the latitude loop. A similar load

imbalance can arise in the microtasking if the number of modes is not a

multiple of the number of processors; because the number of modes is much

larger than the number of latitudes, this load imbalance is less serious.

In our GSM, even and odd modes (those with n-m-even or odd) are treated

separately, so the relevant numbers are the number of even and odd modes.

For the R15 truncation, there are 128 even and 128 odd modes. Finally, if

the number of processors exceeds the number of layers, different processors

may attempt to lock the same region of shared memory in the last step of

the latitude loop, resulting in unproductive idle time. Because the up-

dating of the shared memory takes up only a small amount of the total time

spent in the latitude tasks (less than 10% in our case), this is a less im-

portant source of inefficiency.

We tested the macrotasking separately from the microtasking, with

varying numbers of processors. The results for the macrotasking are shown

in Table 1. Each row in the table represents a 12-hour forecast; all the

forecast results agreed with the single-processor version of the GSM to

within round-off error. The execution times, which are elapsed wall-clock

times, are averaged over 12 time steps; the times given for the latitude

task exclude the time used for initiating the child processes. The second

column shows the minimum and maximum number of latitudes handled by each of

the processors; for optimum load balance, the two should be identical. The

15

-'-4 LA aL
m- -4 0a N0 U

14. C, 00 cy0
(4-4 -4

E

'--4

x 4 cc a-, a.4L
0 a' -40

gm) O)CC4- n J)
04 E.- nL

4.) - 4 00
4- 0-

41 4 0 E. .
41

0oo44C -4 C4 ON 00

04.

600
4) ON 0

W 4) c

CL
4

4 C) at Mti~
$40 4 0 0 Ln

004-4 0 -LAL
44~ "J

,4 04
41WLn Ln

4J40 -4 M CA (

C:" - LA LA0 Ca0

44)

o Go
4r-

.0 0 - A0'0
ca 0A 0 L

w~ C4 r--4 r

444
40

0

E~J 0 LA ((-1 0C4

-44 -4
(4-

speedup is defined as the ratio of single processor over multi-processor

execution time, and the efficiency is the speedup divided by the number of

processors. The maximum wait is the time between the first and last pro-

cessor to finish the latitude tasks. The effects of load imbalancing can

be seen by comparing the efficiency of the latitude task for 4 and 10 pro-

cessors (well balanced) with those for 8 and 12 processors (poorly

balanced). Since the maximum number of latitudes per processor does not

decrease when 12 instead of 10 processors are used, no speedup is gained.

In the case with 12 processors, some conflicts in accessing shared memory

occurred because the number of processors exceeded the number of layers;

however, this did not result in any additional inefficiency, because (for-

tuitously) the processors idled by a memory lockout were also the ones

which only had one latitude assigned to them. The speedups shown over the

entire time step illustrate the decrease in overall efficiency, if macro-

tasking alone is implemented, as more processors are added, due to the de-

creasing portion of parallel code. It should be noted, however, that the

overall speedups of Table 1 represent lower bounds, since the fraction of

time spent in the latitude tasks would be higher for a model with sophis-

ticated physics.

Table 2. Execution times for macro-tasking of latitudes, combined with
microtasking of the time stepping

Minimum/Maximum
No. of No. of Modes Execution

Processors per Processor Time Speedup Efficiency

1 128/128 147.20 1.0 l00.%

4 32/32 37.54 3.92 98.0%

8 16/16 22.12 6.65 83.2%

10 12/13 15.11 9.74 97.4%

12 10/11 14.90 9.88 82.3%

17

Test runs using both macrotasking and microtasking are shown in

Table 2. The second column shows the minimum and maximum numbers of modes

assigned to each processor; again, for perfect load balance the two should

be the same. It is apparent that the microtasking is very efficient, since

the overall efficiencies are very close to those for the latitude tasks

alone (viz. Table 2). A comparison of the case with 4 and 10 processors

illustrates that the load imbalance in the microtasking (in the case with

10 processors) does not have an appreciable effect on the overall

efficiency.

5. Latitude wavenumber macrotasking scheme

The success of the latitude macrotasking scheme requires a tightly

coupled shared memory architecture. This approach cannot be implemented on

a distributed memory machine nor is it expected to be efficient in loosely

coupled systems. In this section we pursue a different tack. By breaking

the basic algorithm at the Fourier representation we can attain macro-

tasking for both latitude and wavenumber tasks. Here the latitude tasks

are somewhat smaller than those used in the latitude only macrotasking

scheme. The advantages of latitude wavenumber tasking are that the entire

algorithm is macrotasked, the Legendre calculations are completely ac-

complished within a single task so that reproducibility is assured and only

a single memory lock is requiree.

For latitude wavenumber macrotasking, we consider the calculations in

steps (2), (3) and (4) (of Section 3) for each latitude j to be a task

handled by one of the processors. Similarly, we consider the calculations

in steps (5), (6) and (1) for each wavenumber m to be a task. This implies

that steps (l)-(5) are no longer performed in a loop on latitude as in the

conventional single processor implementation.

We can achieve load balance either by properly apportioning the number

of tasks handled by each processor or by dynamic task allocation. We chose

the former approach in Section 4 and the latter approach here (Section

5.1). For example, with static allocation, excluding diabatic processes.

all latitude tasks are roughly the s ,, size. and all wavenumber tasks arc

- 18 -

roughly Lhe same size. This suggests evenly dividing all latitude tasks

and all wavenumbei tasks among available processors. Including diabatic

processes upsets this balance since the amount of computations required by

the paramcteiized diabatic processes (e.g. convection) varies with lati-

tude. We may compensate for this lack of balance by pairing small and

large tasks of Lhe same type. With dynamic allocation imbalances are less

of a problem since the most time consuming task of each type could be as-

signed first.

Within each task, a processor can proceed independently of the others:

no communication is necessary and, hence, the integrity of the data is

readily preserved. Since no partial sums are used, the ordering of tasks

is immaterial. Within tasks arithmetic will foliow prescheduled ordering

so that results are exactly reproducible. However ordering of data move-

ment should be immaterial. The transitions (1)-(2) and (4)-(5) require

processors to share the results of their computations, and care is required

for them to do this efficiently and without compromising the data. Essen-

tially a processor's results from step (1) are placed in memory for all

processors to read when performing step (2). The same procedure is fol-

lowed for steps (4)-(5). A method of insuring data integrity is to main-

tain a critical set of indicators of the valid time of each segment of

shared memory (Section 5.2). In a loosely coupled system, shared memory

might be arranged so that each processor reads data which range over the

entire set of Fourier coefficients but writes to only to a small contiguous

part of memory (Fig. 3). However for a tightly coupled machine like the

Sequent storing the Fourier variables and tendencies in the same order is

advantageous (Section 5.3)

As this scheme is novel, our Phase I strategy concentrates on the

transforms in our software implementation and tests (Section 5.4). The

reasoning is as follows: The transforms are the part of the algorithm

which require sharing of data and communication between processes while

calculations at a gridpoint or at a spectral mode are localized at a single

processor. Therefore, we consider only a single variable at a single

vertical level and use null versions of the tendency and time step cal-

culations. That is the tendency calculation simply sets the gridpoint

19

Fig. 3

Shared Storage Configuration

Processor Processor Processor

Tasks *- M * .*

Wave All wave All wave All wave

Tasks * r-i m rnI- **

(5,6,1) data data data

Wave
- latitud-e

Latitude lttd aiuelttd

Task-s .- * .+

(2,3,4) dt aadt

La tit ude e
-Wave

Wave Al aeAlwaeAlwv

Tasks M- m *m+i

(5,6.1) dataat

Note: "o data" or "J data" may be a single wave I/latitude or a
group of wave Os/latitudes.

-2C -

tendencies equal to the gridpoint values and the time step calculation

simply sets the spectral values equal to spectral tendencies. (To be sure

that any potential errors would not be masked by other errors we overwrite

the old gridpoint values in the tendency calculation and the old spectral

tendencies in the time step calculation with a special value, -777.) With

these null versions of the tendency and time step calculations the model

variables simply cycle between grid point and spectral representations.

In this algorithm subscripts and subscript ranges listed in Table 3

are employed. Generally, Nn - NM. The j index of 0 is never used. We re-

serve k for future use as a vertical index.

Table 3. Subscript usage.

Subscript Description Range

...

i longitude i - 1, N i

j latitude j - -Nj, N.

k level/layer k - 1, Nk

m zonal wave index m - 0, Nm

n total wave index n - m, m + Nn
A A

n (n - m) n - 0, Nn

5.1. Task allocation

We designed a dynamic task allocation algorithm for the latitude wave-

number tasking scheme. The task allocation is based on guarding three

critical pointers by a software lock. These pointers define the Nexttask_

TYPE (NTYPE), the NextTASKindex (NTASK) and the NexttaskTIME (NTIME).

NTYPE is 1 if the next task to be performed is a latitude task, -1 if it is

a wavenumber task and 0 if there are no further tasks to be performed.

NTASK is the latitude or wavenumber index of the next task and NTIME is the

valid model time at the start of the next task.

- 21 -

Vhenever a processor is available to begin a new task it executes the

task allocation algorithm. This algorithm locks the critical task

pointers, uses them to set the local pointers describing the current task

for the current processor and updates the critical task pointers. If the

critical task pointers are locked, indicating that another processor is

executing the task allocation algorithm, the current processor waits until

the lock is released.

5.2. Data Integrity

To maintain data integrity we track the valid time of each segment of

shared nonconstant storage. A segment is the output of a single latitude

or wave number task. In other words for each latitude and wave number we

store a time in a shared locked variable, either

VTLAT(j), the ValidTimeofLATitude j or

VTWAVE(m), the ValidTime ofWAVEnumber m.

While a task is updating shared nonconstant storage it locks its VTLAT or

VTWAVE variable. Before a task reads a segment of shared nonconstant stor-

age it checks that the VTLAT or VTWAVE value is correct. At the end of

reading, another check may be performed, but this is optional (once de-

bugging is complete) because of the structure of the algorithm, i.e. no

latitude task can complete until all preceeding wavenumber tasks are com-

plete and vice versa. (See the following discussion of equivalencing the

Fourier arrays.) If a segment to be read is locked or not yet current the

task goes on to other work or waits.

The VTLAT and VTWAVE are critical data. However an actual lock is not

necessary: only one process will write to one of these locations at any

one time, although many processes may be trying to read from it. An ef-

fective lock is simply to store a special value (-777) in the valid time

variable.

- 22

5.3. Storage requirements

Storage requirements for this scheme are not much greater than other

schemes. In the latitude tasking scheme, we maintain three complete sets

of spectral coefficients, for the previous two time levels and to accumu-

late the spectral tendencies. In the current scheme, the spectral tenden-

cies are accumulated locally, for each wavenumber, so we need to keep only

two complete time levels of spectral data. However we also need to store

the Fourier coefficients for the variables and tendencies. If stored as

outlined in the following paragraphs, the Fourier data require 2*Nj/Nn

times the storage of one set of spectral coefficients.

The Fourier variables and tendency data, XVF and XTF, must include

storage for all wavenumbers included in the truncation but not for all

wavenumbers required by the FF Ts. Recall that higher wavenumbers generated

by the quadratic terms are truncated by the FFTs. For rhomboidal trunca-

tions, we must have Ni ! 3 *Nm + 1. Since the Fouriers are complex the grid

point storage is 50% greater than the Fourier storage. In order to store

only the truncated Fourier coefficients in shared storage we must move them

to local arrays before performing the FFTs.

Using local storage for the grid point values and FFTs also allows us

to use the same storage for XVF and XTF. This approach requires that lati-

tude tasks move the XVF data to local storage before performing the FFT

synthesis and then move the XTF data from local storage after performing

the FFT analysis. There is no possibility of loss of data integrity if the

XTF and X11F arrays are congruent. By congruent we mean that the storage

locations for a single latitude are equivalenced and the storage locations

for a single wave number are equivalenced. This keeps the storage used by

the individual tasks distinct. Data integrity is assured in this case

since the algorithm structure guarantees that a wavenumber task cannot

complete without data from each latitude and vice versa. That is, step

(5), the Gauss-Legendre integration for any m requires Fourier data at all

j. Thus none of step 5) can complete unless all of step (4) are done.

Similarly step (2) the Fourier synthesis at any j requires Fourier data at

all m. Again none of step (2) can complete until all of step (1) are

done. Since all the Fourier arrays will have the same nurrber of latitudes

and wavenumbers they will be congruent if j and m are the first two indices

and all these arrays are stored together in one common block with no

intervening variables.

The calculation of the Pmn had to be revised since they are used in

the wavenumber tasks, not the latitude tasks. We considered three possi-

bilities: Option A is to precalculate all Pmn. This option requires stor-

age of Nm*Nn*N. real numbers. Option B is to precalculate all Pmm. Option

C is to continue with the present scheme, but this requires a fair bit of

extra work or of extra synchronization. In any case the emn used in the

pmn calculation are precalculated. Option B was implemented as a reason-

able compromise.

5.4. Test results

The algorithm described above was completely specified and coded.

Several short test experiments were run using a rhomboidal 15 truncation,

20 latitudes in each hemisphere and 48 longitudes. The correctness of the

results was verified by monitoring the global rms value of the variable in

spectral and gridpoint space. In most of the runs we performed three com-

plete sets of transforms or time steps. Because of the Robert time filter,

the forecast time or last filtered time is at the end of the second time

step. Differences between initial and final conditions should be zero

since only transforms were calculated. Differences were of the size to be

expected due to roundoff errors and appear to grow linearly with the number

of time steps. For example, at the end of 11 time steps, the rms differ-

ence had grown to be about 11/3 times larger than the rms difference at the

end of three time steps. Round off errors for all runs of the same fore-

cast length were idenLical, independen ot the number of processors used,

demonstrating that our algorithm maintains a set order of arithmetic

operations.

Timing rc "ilts are shown in the table 4. These numbers are the wall

clock time used to perform the iultitasked portion of the code. Activity on

the Sequent, when these runs were performed was not significant. We ig-

nored the time due to the initial and final seg:erts because in any real-

istic application their contribution would be insignificant since many time

steps would be used. (Perhaps 100 per 24 hours of forecast.) Similarly,

the time used to fork the child processes was not included.

Table 4. Latitude wavenumber timings

Number of Processor Time (sec) Speed Up Efficiency (%)

..

1 18.93 1.0 100

8 2.79 6.8 85

9 2.72 7.0 77

Here efficiency is defined as the speed up factor divided by the number of

processors. Because there are 40 latitude tasks and 16 wavenumber tasks

per cycle the 8 processor configuration is well balanced. Adding the ninth

processor does not improve the overall time very much since additional time

is wasted waiting for synchronization. These results seen in Fig. 4 which

shows the activity for each processor for the 8 and 9 processor runs as a

function of time. In this figure, latitude tasks are dotted and wavenumber

tasks are hatched. Nonproductive time is marked by the solid horizontal

bars. Nonproductive time may be characterized as start up time, synchroni-

zation time, and completion time. Wavenumber task 0 and latitude task I

are marked by an asterisk in the figure. These tasks also compute the rms

values used to monitor the correctness of the calculation. Clearly differ-

ent processors perform different tazks for differcnt time steps. This

demonstrates the dynamic nature of the task allocation algorithm.

6. Discussion and extensions to other architectures

The approach of Section 5 could be extended in several ways for both

shared and distributed MIMD architectures. For the Sequent and other

tightly coupled machines where local and shared memory are similar in speed

and ease of use, the amount of communication with shared memory is of no

- 25 -

0~

0 0.5 1.0 1.5 2.0 2.5 3.0

Time (sec)

7n 5

CO,

0

0 0.5 1.0 1.5 2.0 2.5 3.0

Time (sec)

Fig. 4. Processor activity for runs of the latitude wavenumber macrotasking
algorithm using eight (top) and nine (bottom) processors. See text
for details.

-26

concern. In loosely coupled systems, this traffic should be minimized.

Similarly in dMIMD systems, the volume of communication between processors

should be minimized. The latitude wavenumber approach greatly limits

communication. If load balance can be maintained, static task allocation

is desireable, since it also limits communication. Static task allocation

also greatly simplifies the design of dMIMD algorithms. The ability of the

latitude wavenumber algorithm developed in Phase I for dynamic task alloca-

tion would be useful in environments not dedicated solely to running the

GSM. Finally, for SIMD, new approaches are needed. One approach is to

assign each processor to one or a small number of latitude longitude grid

points. These issues are described in turn in the following sections.

6.1. General extensions to the latitude wavenumber approach

More detailed breakdowns within the latitude and wavenuQiber tasks are

possible and desirable to allow better load balancing and to make use of

more processors for a given model resolution. With dynamic task allocation

and a finer division of the algorithm it becomes possible to allow better

load balancing simply because there are more tasks. With static task allo-

cation, it may be desireable to pair latitudes and wavenumbers. This re-

duction in granularity may be offset by creating subtasks. A finer break-

down is possible since (1), (2), (4) and (5) may be decoupled vertically,

i.e. each level may be handled separately, while (3) and (6) may be de-

coupled horizontally with each grid point or mode handled separately.

There is a special concern for dynamically allocating tasks for NWP

models and other systems which are sensitively dependent on initial condi-

tions; that is, if the order of arithmetic operations varies from run to

run, round off error will also vary and the results will be irreprodu-

cible. Tiis may be of little consequence to operational NWP, but may be

important for some research applications. However for the latitude wave-

number tasking scheme and the finer breakdowns listed above, the arithmetic

operations are self contained within single tasks and subtasks. This

assures reproducibility and almost entirely eliminates the need to lock

storage. Data integrity is maintained by synchronization mechanisms which

- 27

insure that all preceeding tasks are complete before their results are

used.

Microtasking within tasks and subtasks might be used to achieve load

balance in cases for which load balance cannot be achieved at the macro-

tasking level. Many compilers will provide microtasking at the loop level

either automatically or according to directives.

In the latitude wavenumber algorithm we make no special treatment for

the FFTs. The breakdown we have outlined is rather coarse. Each of the

processors in the above discussion might actually be a group of processors

and multiprocessor FFT methods as described by Briggs et al. (1987) might

be implemented within each group. We suggest using this approach within an

SIMD algorithm below. Briggs et al. however did not consider communica-

tion costs in their analysis. Such costs are significant for many archi-

tectures and are a major concern for loosely coupled architectures (Saltz

et al., 1987). For global spectral models all FFTs are the same relatively

modest length (100 - 1000). Therefore, for operational NWP on a coarse

grained machine, it may be economically efficient to implement the FFTs in

hardware within each processor.

Within the basic approach of Section 5 the transforms between grid

point and spectral space are recognizable as transpose splitting operations

(McBryan and Van de Velde, 1987). According to McBryan and Van de Velde

algorithms for problems in this class may be relatively portable if appro-

priate library routines are used.

6.2. Analysis of communication load in GSM algorithms

For many types of multiprocessors communication through shared memory

or communication channels may easily become a bottleneck. In this regard

the latitude wavenumber tasking approach is superior to the latitude only

tasking approach. The analysis of the communication load in these two

approaches follows. To simplify the analysis we treat the null model of

simple spectral transformations introduced in Section 5.

- 28 -

The principal shared data for latitude tasking are the spectral coef-

ficients at three time levels. For each latitude, step (1) fetches all

spectral coefficients at the central time and step (5) fetches and stores

all spectral coefficients for the tendencies. Step (6), the time stepping,

requires all previous, central and tendency spectral coefficients to be

fetched and all new time level spectral coefficients to be stored. In all

(3*N + 4)N n*Nm memory accesses are required per time step. This could be

reduced considerably if several latitudes were done by each processor and

if each processor had enough storage to keep a copy of the central and

tendency spectral coefficients.

If communication restrictions were especially severe, then memory ac-

cesses could be reduced further by reproducing all three time levels of

spectral coefficients and the calculation of step (6) across all processors

(J. Sela, pers. comm., 1988). In this approach each of P processors

calculates the contribution to the spectral tendencies for P*N. lati-

tudes. These contributions are then added up in shared memory and fetched

by each processor. The total memory access is only 3*P*Nn*Nm *

This approach also makes sense for dMIMD architectures in which the

processors are arranged in a hypercube geometry. In this case each of the

dimensions of the hypercube is collapsed in turn. The final result must

then be fanned out. The total number of communication transfers would be

only about 2 *P*Nn*Nm. The final fan out can be eliminated if each pro-

cessor accumulates its own sum but then the total communication transfers

would be roughly d*P*Nn*Nm, where d is the dimension of the hypercube. In

spite of its heavier communication burden, this last approach should be

most efficient, since the communication load is evenly balanced and always

between nearest neighbors.

For the latitude wavenumber tasking approach the principal shared data

are the past and central spectral coefficients and the central and tendency

Fourier coefficients. At each of the interfaces between steps (1) and (2)

and between steps (4) and (5) a complete set of fourier data is stored and

fetched. Additionally, during the step (6), the past and central spectral

coefficients are fetched and the new central spectral coefficients are

stored. Each value is fetched and/or stored exactly once. As a result the

- 29

total number of shared memory accesses per time step is only

4*Nm*N. + 3*N m*N n . With static task allocation, the spectral coefficients

would not need to be shared in the latitude wavenumber tasking approach and

the total number of accesses would be only 4 *Nm*Nj . The corresponding

value for latitude tasking was roughly (3/ 4)*Nn larger. The latitude

wavenumber tasking approach may also be used with dMIMD architecture as

described below. With static task allocation, the total number of

communication transfers would be only 2*Nm*Nj* Note that the communica-

tions load for the latitude wavenumber approach is independent of the

number of processors.

6.3. Static task allocation for MIMD architectures

The latitude wavenumber approach is appropriate for both shared and

distributed MIMD architectures. In both dMIMD and loosely coupled sMIMD

machines it is important to limit communication.

When shared memory is slow relative to local memory it is important to

limit communication through shared memory. Static decomposition would be

favored in such cases since certain constant data and previous data could

be fixed to the appropriate processor. For example if one processor always

handles wavenumber task m then only this processor requires the spectrdl

coefficients associated with m. For similar reasons, static decomposition

would be desireable for dMIMD systems.

With static task allocation the dMIMD algorithm would look very much

like the sMIMD algorithm. Fig. 5 describes the basic dMIMD algorithm.

Rather than accessed via shared memory, the Fourier data are actively com-

municated among the processors. To maintain data integrity each data seg-

ment communicated should include a valid time associated with the data.

In addition for dMIMD architecture, static decomposition would fix the

communication data paths, that is we would know where to send the data at

synchronization points, and eliminate the need for a dynamic task alloca-

tion mechanism. For dMIMD architectures, dynamic task allocation would re-

quire a means of passing control among the processors. In addition a table

- 30 -

Figure 5

Data Flow Configuration

Tasks Processor Processor Processor

M-i m m+l

Wave #/ All wave All wave All wave
Tasks m-1 m m+l

(5,6,1)
data data data

Wave #i J - x m x
-latitude X() Xj)

All All AllLatitude latitude latitude latitude
Tasks .* J-1 j J+l
(2,3,4) data data data

Latitude f) f (P
-Wave #

Wave I All wave All wave All wave
Tasks . .r-1 rn rn'l *
(5,6,1) data data data

Note: "m data" or "j data" may be a single wave I/latitude or a
group of wave Is/latitudes.

- 31 -

describing the current and past task for each processor would have to be

maintained in all processors to describe the changing communication paths

for the data. The current calculation in any processor would have to be

interruptible when a new process begins on some other processor. Posting

new information describing the state of the processor which has just ini-

tiated a task in the task table would implicitly request data from many

other processors. This request for data from previous tasks should be

handled immediately so that the new task is not kept waiting.

For static decomposition pairing up latitudes, one polar and one equa-

torial might be advantageous. Tropical physics is more complex (mostly due

to convection), while at the poles we might limit the number of grid points

and Fourier truncation. We might call this approach folding the latitude

domain. Similarly, a triangular truncation might be implemented by folding

the wavenumber domain. This would pair wavenumbers 0 and Nm, 1 and Nm-l,

etc., yielding the same number of spectral modes for each processor.

6.4. Dynamic task allocation for a loosely coupled sMIMD multitasking
environment

A number of very powerful loosely coupled sMIMD machines exist or are

planned. By loosely coupled, we mean that these machines have local memory

which is much faster and/or easier to access than their larger shared

memory. In operation, these machines may have to perform many functions at

once. Any collection of computers or powerful workstation connected by a

network with a large shared memory device might also be considered a loose-

ly coupled sMIMD machine. Algorithms developed on the Sequent during Phase

I could easily be improved and ported to such machines.

Static decomposition as described in the previous section does not

take advantage of the flexibility of the latitude wavenumber algorithm.

Static balancing is bound to fail if the processors are also performing

other functions simultaneously. Our dynamic task allocation algorithm ad-

justs to the external load. With a robust file server/network this algo-

rithm might be implemented in background at low priority on a collection of

work stations. The computational load would be automatically distributed

- 32 -

to idle workstations. One concern here: What if the slowest workstation

takes on the last latitude task. A more robust algorithm would keep track

of the wall clock time each processor required for each task and would

cause each processor to decline a task if it appears that performing the

task would actually slow the computation.

In the case of a loosely coupled architecture where accessing shared

memory actually required network I/O to a file, or of an architecture which

does not insure data integrity, it might not be desireable to equivalence

the Fourier tendencies and variables. In this case we should arrange stor-

age so that writing (for each task) is to contiguous storage, but reading

roams all over the storage (see Fig. 3).

6.5. An SIMD algorithm

SIMD architectures require a fresh look at the problem. SIMD machines

include the Goodyear MPP, Thinking Machines Connection Machine and the

Active Memory Technology DAP. With these machines each grid point (i.e.

latitude longitude location on the transform grid) might be allocated each

own processor. For example, if the communication channels allow it, we

might implement an SIMD GSM using a topology consisting of a ring of

hypercubes. To describe this approach we let each x represent a pro-

cessor. Then in grid point space each processor corresponds to a single

latitude longitude point:

- 33

x x x x x x x ... x x

x x x x x x x ... x x

Lat.
X X X x X X x ... X X

x x x x x x x ... x x

Long. ->

The communication connections between grid points however are not the usual

2D grid. Along each latitude circle the points are connected by a hyper-

cube. This allows the grid point to Fourier and Fourier to grid point

transforms to be conducted efficiently if the number of longitudes is a

power of two. In Fourier space each processor corresponds to either the

real or imaginary part of a single Fourier coefficient at a single

latitude:

x x x x xxx ... X x

X X X X X X x ... x x
Lat.

x x x x X X x ... x x

V

x x x x x x x ... x x

Wavenumber ->

Truncation demands that the rightmost approximately one third of the

Fourier coefficients be ignored or set to zero. That is about a third of

the processors will be idled in Fourier space. The processors for each

wavenumber communicate in a ring topology. The transformations from

Fourier to spherical harmonic space and from spherical harmonic space to

Fourier space are then accomplished marching either the Fourier data or the

spherical harmonic data around the ring holding the other data in place.

- 34

(This might be termed a systolic dot product.) If the spherical harmonic

data is fixed then each processor has all the Pmn for that n at all

latitudes; otherwise each processor has the Pmn for that latitude for all

n. In spectral space each processor corresponds to a single spectral mode:

x x x x x x x ... x x

X X x x x x x ... x x

Total I Wavenumber
x x x xx xx ... x x

V

X X X x X X x ... x x

Wavenumber ->

Splitting the real and imaginary parts of the Fourier or spectral

variables between pairs of processors will not create great problems. All

operations in Fourier and spectral space are linear and most involve only

arithmetic with real constants. In Fourier space, multiplies by i, the

imaginary unit, will require some data interchanges with nearest neigh-

bors. Otherwise all operations on the real and imaginary parts of the data

are the same.

The number of active total wavenumbers retained in spectral space is

only about 2/5 (or 2/3) of the number of latitudes for rhomboidal (or tri-

angular) truncation. Thus only about 27% (or 44%) of the processors would

be active in spectral space. The low percentage of active processors in

spectral space may not be objectionable since most calculations are in grid

point space.

Alternatively, other approaches which make better use of the available

processors in spectral space are possible. For example, if each processor

has enough memory one could allocate 2 or more grid points to a single pro-

cessor. Some particular advantages would be obtained if the latitude do-

main were folded such that Northern and Scuthern Hemisphere points were

paired. This would save some arithmetic and, for rhomboidal truncation,

- 35 -

double the number of active processors in spectral space. If sufficient

memory were available, additional folding, of the wavenumber domain in half

and the gridpoint domain in thirds would raise the active percentage of

processors to nearly 100% in Fourier space and 80% in spectral space. This

-would require 6 grid points per processor. A similar arrangement without

the North South pairing would allow a triangular truncation model in which

the active percentage of processors would be nearly 100% in Fourier space

and 67% in spectral space.

7. Summary and concluding remarks

We have made a preliminary exploration of the uses of multiprocessing

computers for large scale NWP using spectral models. In general if global

communication between processors is relatively fast and easy, then im-

plementing spectral models is feasible. We find that:

" Some operational centers are already using 2 or 4 processors.

" The basic GSM in use today can easily be macrotasked over latitude and

microtasked within time stepping. Machines with either few processos

or with tightly coupled large shared memory could be efficiently used

this way.

" An adiabatic version of the GSM using latitude macrotasking was im-

plemented on the Sequent. Efficiencies of 98% were achieved, provided

the number of processors allowed an even division of the latitude

tasks.

* The GSM can be recast in terms of latitude and wavenumber tasks. This

approach has a number of advantages: The entire algorithm is macro-

tasked. Only a handful of crucial pointers need to be locked with

this algorithm. The Legendre calculations are localized so that

arithmetic always follows the same ordering and all results (including

roundoff errors) are exactly reproducible. The communication load is

small and independent of the number of processors.

- 36 -

" The latitude wavenumber tasking scheme was implemented and tested on

the Sequent, a sMIMD device. The efticiency of our implementation is

sensitive to the ratios of the number of tasks of different types to

the number of processors. Microtasking within the tasks might be used

to even out the load when the macrotasking division of work is not

balanced.

* We believe the latitude wavenumber tasking scheme could be easily ex-

tended and applied to large sMIMD machines. It is also a good

starting point for dMIMD machines, with hypercube topology.

* The potential of SIMD machines with a hypercube topology is huge. For

this class of machine we would use one processor for each horizontal

grid point. At least one spectral algorithm (of the Navier-Stokes

equations) has been implemented successfully on the Connection Machine

(Tomboulian et al., 1988).

Finally, we note that one of the goals of the SBIR program is com-

mercialization. There are many opportunities for commercialization in the

field of weather forecasting: there is no doubt that a large market exists

for a better forecast. Over the last decade, it has been demonstrated es-

pecially by the European Center for Medium-Range Weather Forecasting

(ECMWF) that given greater resources for operations and research, it is

possible to make better weather predictions. At the same time,

requirements for more detailed and accurate forecasts have increased, in

part because as forecast skill grows, public expectations also grow. The

number and uses of weather predictions will certainly grow as the

reliability of the forecasts increase. Because government agencies

involved in weather prediction have limited mandates and cannot market

their products, the opportunity for commercialization of weather prediction

has been growing, and this growth will continue. Further, as the cost of

communications and computers decrease, private weather forecasting becomes

more feasible. The results of the current project demonstrate the

usefulness of multiprocessing compuzers for lowering the computational cost

of NWP.

37 -

8. References

Brenner, S., C.-H. Yang, and S.Y.K. Yee, 1982: The AFGL spectral model of

the moist global atmosphere: Documentation of the baseline version.

AFGL-TR-82-0393, AFGL, Meteorology Division, Hanscom AFB, Bedford,

MA 01731, 65 pp.

Briggs, W.L., L.B. Hart, R.A. Sweet and A. O'Gallagher, 1987:

Multiprocessor FFT methods, SIAM J. Sci. Stat. Comput., 8, s27-s42.

Bourke, W., B. McAvaney, K. Puri, and R. Thurling, 1977: Global modeling

of atmospheric flow by spectral methods. In General Circulation

Models of the Atmosphere, Methods in Computational Physics, Vol, 17,

edited by J. Chang, Academic Press, New York, pp. 267-324.

Dent, D., 1988: The ECMWF model: Past, present and future. In

Multiprocessing in Meteorological Models, edited by G.-R. Hoffmann and

D. F. Snelling, Springer-Verlag, pp. 369-381.

Fox, G.C. , and SW. Otto, 1984: Algorithms for concurrent processors.

Physics Today, 37, 53-59.

Gibson, J.K., 1985: A production multi-tasking numerical prediction

model. Comp. Phys. Communications, 37, 317-327.

Gustafson, J. L., G. R. Montry and R. E. Benner, 1988: Development of

parallel methods for a 1024-processor hypercube. SIAM J. Sci, Stat.

Compute., 9, 609-638.

Hoffmann, G.-R. and D. F. Snelling, 1988: A comparative study of the ECMWF

weather model on several multiprocessor architectures. In

Multiprocessing in Meteorological Models, edited by G.-R. Hoffmann and

D. F. Snelling, Springer-Verlag, pp. 419-432.

38 -

Karp, A. H. and R. B. Babb, 1988: A comparison of 12 parallel Fortran

dialects. IEEE Software, September, 52-67.

Kung, H.T., 1980: The structure of parallel algorithms. Advances in

Computers, Vol. 19, Academic Press, New York, pp. 65-112.

Kuck, D. J., E. S. Davidson, D. H. Lawrie and A. H. Sameh, 1986: Parallel

supercomputing today and the Cedar approach. Sci.. 231, 967-974.

McBryan, O.A., and E. F. Van De Velde, 1987Hypercube algorithms an

implementations, SIAM J. Sci. Stat. Comput., 8, s227-s287.

Ranka, S., Y. Won and S. Sahni, 1988: Programming a hypercube

multicomputer. IEEE Software, September, 69-77.

Saltz, J.H., V.K. Naik and D.M. Nicol, 1987: Reduction of the effects of

the communication delays in scientific algorithms on message passing

MIMD architectures, SIAM J. Sci. Stat. Comput., 8, sl18-s134.

Sela, J.G., 1980: Spectral modeling at the National Meteorological

Center. Mon. Weather Rev., 108, 1279-1292.

Shuman, F.G., 1982: Numerical weather prediction. In The Federal Plan for

Meteorological Services and Suporting Research. Fiscal Year 1983,

Department of Commerce, Washington, D.C., pp. 1-1 - 1-13.

Snelling, D. F., 1988: Tools for assessing multiprocessing. In

Multiprocessing in Meteorological Models, edited by G.-R. Hoffmann and

D. F. Snelling, Springer-Verlag, pp. 237-253.

Tomboulian, S., C. Streett and M. Macaraeg, 1988: Spectral solution of the

incompressible Navier-Stokes equations on the Connection Machine2. To

appedr in Super Computing 88.

39

/

White, P. W. and R. L. Wiley, 1988: U.K. Meteorological Offices's plans

for using multiprocessor systems. In Multiprocessing in

Meteorological Models, edited by C.-R. Hoffmann and D. F. Snelling,

Springer-Verlag, pp. 215-224.

WMO, 1985: Report of the Seminar on Progress in Numerical Modelling and

the Understanding of Predictability as a Result of the Global Weather

Experiment - Sigtuna, Sweden, October, 1984. WMO/TD - No. 33, WMO,

Case postale No. 5, CH-1211 Geneva 20, Switzerland.

- 40 -

Appendix. Acronyms

AFGL Air Force Geophysics Laboratory [Hanscom AFB, MA 01731]

AFGWC Air Force Global Weather Central [Offut AFB, NE]

AFWL Air Force Weapons Laboratory

ANSI American National Standards Institute

CCM Community Climate Model

DAP distributed array processor

ECMWF European Center for Medium Range Weather Forecasts [Shinfield Park,
Reading, Berkshire RG2 9AX, England]

FFT fast fourier transform

CARP Global Atmospheric Research Program

GCM general circulation model

GFDL Geophysical Fluid Dynamics Laboratory (NOAA) [Princeton University,
Princeton, NJ 08540]

GLA GSFC Laboratory for Atmospheres (NASA) [Greenblet, MD 29771]

GSM global spectral model

MIMD Multiple Instruction Multiple Data

MPP massively parallel processor

NCAR National Center for Atmospheric Research [Boulder, GO 80307]

NEPRF Naval Environmental Prediction Research Facility [Monterey, CA]

NMC National Meteorological Center (NOAA NWS) [Washington, D.C. 20233]

NWP numerical weather prediction

SBIR Small Business Innovative Research

SIMD Single Instruction Multiple Data

SST Sea Surface Temperature

UCLA University of California at Los Angeles [Los Angeles, CA]

WMO World Meteorological Organization [Geneva]

- 41 -

